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We studied the viscoelastic response of entangled actin networks using embedded microbeads driven by
force pulses with amplitudes in the range from 3 to 120 pN and durations up to 60 s. We distinguished three
regimes in the time dependence of the compliance J�t� of the network. These were characterized by specific
power laws J�t�� t�i �i=1, 2, 3�. In the short-time regime �i=1�, we observed the exponent �1�0.75. In the
long-time regime �i=3�, we find that �3�1. For the intermediate-time interval �i=2�, we observed a novel
dynamic regime: for all actin concentrations and all applied forces, it was characterized by the exponent �3

�0.5. In both regimes i=2 and i=3, the compliance depended upon the actin concentration c, such as J
�c−�i with �2�1.1 and �3�1.4. Using these results, we calculated the shear modulus in the frequency domain
and found that the intermediate-time regime in the t domain corresponds to its plateau behavior.
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I. INTRODUCTION

Semiflexible macromolecular networks exhibit unique
viscoelastic properties which determine the mechanical be-
havior of cells and tissues and control the dynamics of cel-
lular processes such as adhesion and cell transport through
blood vessels or bones �1�. Systematic studies of the struc-
tural and mechanical properties of these types of materials
are, thus, essential in order to relate the biological functions
of cells and tissues to their microstructural material proper-
ties. A promising strategy to cope with these intrinsic hetero-
geneously structured biomacromolecular networks and gels
is to establish simplified but nevertheless realistic in vitro
models of biomaterials and to perform comparative studies
of model systems and natural materials using micromechani-
cal tools such as micropipettes �2�, atomic force microscopes
�3–5�, optical tweezers �6�, and magnetic bead microrheom-
eters �7–11�.

Actin is a filamentous semiflexible protein and a major
component of the intracellular scaffold skeleton of eukary-
otic cells. Actin networks play a key role in the mechanical
stability of cells and in numerous chemomechanical pro-
cesses �1�, such as cell locomotion on surfaces �12� and the
growth of cellular protrusions �13�. The biological function
of the cytoskeleton is determined by its viscoelastic proper-
ties, which are controlled by the highly heterogeneous and
constantly changing structure of the network. Mechanical
studies of the local viscoelastic behavior of intracellular scaf-
folds are absolutely essential to relate the biological function
to structural and physical properties of the macromolecular
networks. In the classical rheometry of technical materials,
samples are subjected to homogeneous shear fields, in which
local effects �such as local nonaffine deformation of the net-
work, local nanofluidics, or microinhomogeneities� are
screened, and the mechanical responses of bulk samples are
studied.

Local microviscoelastic properties of actin networks have
been extensively studied by a number of methods. Among
these methods, one can distinguish between the so-called
passive and active approaches. In passive microrheology, the

viscoelastic parameters are determined by analysis of ther-
mal fluctuations of embedded beads in terms of Einstein’s
theory of Brownian motion �14–21�.

Under realistic biological conditions, however, forces act-
ing on cells are usually highly inhomogeneous and are often
distributed over regions with the extent comparable to those
of the inhomogeneities of the cytoskeleton. To gain an in-
sight into the viscoelastic responses of biomaterials under
natural conditions, microrheological tools capable of probing
the characteristic length scales have to be applied. Active
microrheometry is ideally suited to examine such microvis-
coelastic processes.

During active microrheological experiments, a force is ap-
plied either to the cantilever tip of an atomic force micro-
scope �3–5� or to a bead by either a laser beam �optical
tweezers� �6,22� or a magnetic field �magnetic tweezers�
�7–11,23,34�, and the response of the object is measured in
terms of the displacement of the bead or of the atomic force
microscope �AFM� tip.

Pulsed-force magnetic tweezers allow one to apply unidi-
rectional force pulses of rectangular shape to paramagnetic
beads. This technique enables us to apply long �up to 60 s�
pulses and to measure displacements of the beads from about
0.06 �m �corresponding to about 20% of the network mesh
size� up to 600 �m. The bead displacement, x�t�, induced by
a rectangular force pulse with amplitude f is related to the
creep compliance, J�t�, as

J�t� =
6�Rx�t�

f
, �1�

where R is the bead radius and t is the time. Recently, we
reported �35� for the first time a new type of behavior in the
microrheometry of the actin network. We showed that during
the forced motion of beads embedded in tightly entangled
actin solutions, the compliance obeys a power law J�t�
� t0.5. In this paper, we report on these measurements in
detail and report further results obtained by long force-
pulsed microrheometry of entangled actin networks.
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Earlier, we showed �35� that the response curve exhibits
three regimes each of which obeys the law

J�t� = Ait
�i + bi. �2�

Here i=1, 2, 3 denotes the short-time, the intermediate-time,
and the long-time regimes, respectively; Ai are the prefac-
tors; and bi are the offsets with b1=b2=0 and b3�0. In the
short-time regime �i=1�, we found the well-known
�14,28,36,37� power law with the exponent �1�0.75. In the
intermediate-time regime �i=2�, the networks exhibited the
power law �2� with �2�0.5 over two decades. In the long-
time regime �i=3�, we observed the viscouslike motion char-
acterized by �3�1. We established a power law J�c�i for
the variation of the creep compliance with respect to the
actin concentration and found, in the intermediate-time and
long-time regimes, �2�1.1 and �3�1.4, respectively. We
further showed that compliance does not depend on the force
pulse amplitude f in the short-time and long-time regimes as
is found for small forces in the intermediate regime.
However, at higher forces in the intermediate regime, the
force dependence of the compliance followed the power law
J� f−�2 with �2�0.27. Using our compliance data, we cal-
culated the frequency-dependent viscoelastic modulus G���,
which also exhibited three regimes. Here, we show that the
plateau regime of the storage modulus G���� corresponds to
the compliance J�t�� t1/2, i.e., to intermediate-time regime in
the t domain.

The paper is organized as follows. In Sec. II, we describe
the materials and the methods. In Sec. III, we present our
observations and extract the power laws which describe the
enforced bead motion and calculate the viscoelastic modulus
in the frequency domain from our compliance data. In Sec.
IV, we summarize the results and discuss the behavior of the
viscoelastic modulus and its relation to the compliance in the
t domain.

II. MATERIALS AND METHODS

A. Magnetic Tweezers

All measurements were performed with a magnetic bead
microrheometer �magnetic tweezers� described previously
�7,32,38�. The central measuring unit consists of a sample
holder and a magnetic coil �1200 turns of 0.7-mm-diameter
copper wire on a core with dimensions 1 cm�diameter�
�5 cm�length��. The end of the core, which is prolonged
and narrows down to a sharp 60° edge, penetrates the closed
sample holder with inner dimensions of 5 mm
�1 cm�length��0.2 mm�height� from the small side and
corresponds to 100 �l of the sample volume. The complete
unit is mounted on an AXIOVERT 10 microscope �Zeiss,
Oberkochen, Germany�. The coil current is supplied by a
specialized current source built in our laboratory that is ca-
pable of generating rectangular current pulses in spite of the
high induction of the coil �typically 95% of the constant
current level is reached in less then 10 ms�. This experimen-
tal setup makes it possible to apply rectangular force pulses,
with amplitude ranging from one to a few hundred piconew-
tons to superparamagnetic transducer particles embedded in
the actin network.

Bright field microscope images of embedded transducer
beads of radius R�2.25 �m were recorded at 70 Hz by a
charge-coupled device �CCD� camera �C4880, Hamamatsu
Photonics, Hamamatsu City, Japan� and digitized movies
were stored directly onto the hard disk of a fast personal
computer �PC� system with a RAID controller, by the use of
the software OPENBOX27. The value of the actual coil current
was stored together with every movie frame for later analy-
sis. The variation of the applied force on the bead with the
distance between the center of the bead and the end of the tip
of the iron core was determined from independent calibration
measurements of similar superparamagnetic particles in so-
lutions of known viscosity. Using this data, we calculated the
force applied to the bead at each moment of time together
with the actual position of the bead. The positions of the
particles were determined with an accuracy of about 10 nm
by digital image processing.

Two types of systematic errors have to be considered. The
first is due to an uncertainty in the initial position of the bead
center point. It is only known that the starting time of the
rectangular force pulse lies between the last measured time
before the coil current is switched on �which we define as
t=0� and the first data point captured after the onset of the
force �t�14 ms�. This uncertainty shifts only the first mea-
sured data points to lower values of x and can be corrected as
described in Ref. �39�. The second type of error may take
place during the very last stage of motion when the bead
approaches the magnet tip, since in this region, the force
increases rapidly with bead displacement. To avoid this, we
analyzed only responses for which the forces increased by
less than 10%. Under this condition, the slopes of the creep
compliance curves deviate by less than 10% �39�.

B. Protein preparation

Monomeric G actin was prepared from rabbit skeletal
muscle �40� and residual cross-linking and capping proteins
were removed as described previously �41�. Actin concentra-
tions were determined by photometry �with the extinction
coefficient of �290=0.63 mg−1 cm−1 at 	=290 nm �42��. All
measurements were performed with freshly prepared actin,
which was sterile filtered and kept in G buffer �2 mM Tris-
�hydroxymethyl�-aminoethane/HCl buffer �Tris-HCl�, 0.2
mM CaCl2, 0.2 mM DTT, 0.2 mM adenosine triphosphate
�ATP�, 0.005 vol.- % NaN3 at pH 8.0� on ice for, at most, 10
days. Polymerization of G actin occurred at room tempera-
ture in F buffer �2 mM Tris-HCl, 100 mM KCl, 0.2 mM
CaCl2, 2 mM MgCl2, 0.2 mM ascorbic acid, 0.5 mM ATP at
pH 7.7� slightly modified by addition of 200 mM KCl and 10
mM of ATP and Mg2+. Following the previous procedure �7�,
the magnetic beads �Dynabeads M-450, Dynal, Hamburg,
Germany; with radius R=2.25 �m� were added to this solu-
tion.

C. Preparation of networks with various mesh sizes

To analyze the variation of the viscoelastic properties of
the actin networks with the mesh sizes, we used five samples
with actin concentrations of c=3,11,19,27,35 �M, which
were prepared on the same day with equal polymerization

UHDE et al. PHYSICAL REVIEW E 72, 061916 �2005�

061916-2



times. The average mesh sizes corresponding to the above
values of concentrations are summarized in Table I. The low-
est concentration is chosen in such a way that the solution
forms an entangled network, while its upper limit value is
determined by the solubility of the monomer.

We determined 130 response curves of 5 samples �of the
different actin concentrations mentioned above�. The re-
sponses of 20 to 30 beads were taken for each sample at
various forces between 3 and 120 pN. The measurements
started at least 40 mn after the initiation of polymerization.
The maximum pulse length, 
max, was restricted by the time
necessary for the bead to cross the chamber. 
max, therefore,
depends on the force amplitude and decreased to about 10 s
at f �100 pN. The maximum pulse lengths for smaller forces
were about 60 s.

III. RESULTS

A. Displacement of beads during the force pulse

A typical deflection of the bead versus time is shown in
Fig. 1�a�. It was obtained with a force amplitude f =40 pN
and the force pulse duration 
max�35 s. Figure 1�b� shows

the initial stage �0.015 s� t�1 s� of the bead displacement.
Figure 2 shows response curves J=J�t� in a double logarith-
mic scale for different force amplitudes varying from 2 to 40
pN. The force amplitudes are indicated by different colors
increasing from red �3 pN� to violet �40 pN�. One can dis-
tinguish three time regimes of the creep response curves
which can be represented by the power law �2�. These re-
gimes are separated by two crossover times 
1 and 
2, which
will be discussed in Sec. III B

B. Crossover times

The crossover times 
1 and 
2 mark the transitions be-
tween the regimes of the bead motion �Fig. 2�. Figure 3
shows the variations of the crossover times with the force
applied to the bead. At f �5.5 pN, the first crossover time 
1
is independent of the force amplitude �solid line in Fig. 3�a��
and has the value 
1�0.27±0.15 s. At f �5.5 pN, this cross-
over time decreases with increasing force �dashed line in Fig.
3�a��. The second crossover time 
2 decreases with increas-
ing force for all values of the force amplitude �solid line in
Fig. 3�b��. The force dependencies of both crossover times

1�f� �at f � f0� as well as 
2�f� �at 2 pN� f �120 pN� to a
good approximation can be represented by the power laws


1,2 � f−1,2. �3�

The exponents for both crossover times are about equal:
1�2�0.5±0.2.

The ratio of the crossover times 
2 /
1 characterizes the
duration of the intermediate regime, while its logarithm,
n=ln�
2 /
1�, is a measure of the number of time decades

TABLE I. Concentrations and corresponding mesh sizes of actin
networks.

Concentration ��M� Concentration �g/ l� Mesh size ��m�

3 0.126 0.96

11 0.462 0.50

19 0.798 0.38

27 1.134 0.32

35 1.470 0.28

FIG. 1. Displacement of the bead embedded into the actin
network under the application of a rectangular force pulse
�c=10 �M, f =40 pN�. �b� Initial stages of the enforced bead mo-
tion. �Actin concentration c=11 �M, force amplitude f �6.5 pN�.

FIG. 2. �Color� Double logarithmic plot of creep compliance
versus time for various forces superimposed on one graph. The
values of the force amplitudes are shown by color running from 3
pN �red� to 40 pN �violet�. Three regimes of the bead motion can be
distinguished: the short-time regime �a� at t�
1 with the slope
�1�0.75 �the solid black line�, the intermediate regime �b� with the
slope �2�0.5 taking place at 
1� t�
2 �indicated by the dashed
black line�, and the long-time regime at t�
2 characterized by
�3�0.9 �indicated by the dashed-dotted black line�. Bending of
some curves downward �arrows� takes place, if the bead is close to
the core tip of the magnet where the force rapidly increases. Actin
concentration is 27 �M.
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covered. The data summarized in Fig. 3 yielded 
2 /
1
�100 and n�2. Hence, the duration of the intermediate-
time regime �the primary interest of the present paper� is two
decades.

C. Exponents

If ln�J�t�� is plotted versus ln t �Fig. 2�, all curves during
the short-time �t�
1�, the intermediate-time �
1� t�
2�,
and the long-time regimes �t�
2� increase nearly linearly.
By averaging the slopes in each regime over all curves, we
find the exponents

�1 � 0.75 ± 0.05, �2 � 0.5 ± 0.05, �2 � 0.9 ± 0.1.

�4�

The intermediate regime characterized by the exponent �2
�4� was found in all our measurements, i.e., for all values of
the actin concentration and force amplitudes. It was also ob-
served in experiments performed with smaller beads of
2.8 �m diameter �data not shown�.

D. Compliance coefficient in the short-time regime

To analyze the creep compliance in the short-time regime,
we took into account the uncertainty in the position of the
initial data point as described above. Observation of the
short-time behavior was possible for forces below 40 pN,
since at higher forces the number of data points was too
small. All the data obtained in this regime exhibited consid-
erable variations. We averaged the responses obtained from
over 20 beads to which 2 to 4 pulses were applied. Figure 4
shows two examples of the averaged short-time response,
x�t� / f , obtained for networks with actin concentrations of
11 �M �a� and 19 �M �b�. The coefficient A1 of the compli-

ance is independent of the actin concentration and the ap-
plied force and takes the value A1��27.2±6.1�Pa−1 s−3/4.

E. Compliance coefficient in the intermediate-time
regime

1. Dependence of A2 on force

Figure 5 shows the compliance coefficient A2 plotted ver-
sus the force amplitude for four data sets. The data shown in
Figs. 5�a� and 5�c� with concentrations 11 �M �circles�,
19 �M �squares�, and 27 �M �triangles� correspond to the
same day of preparation, while the data shown in Fig. 5�d�
�c=10 �M� were obtained from the actin network prepared
on a different day. The data shown in Figs. 5�a� and 5�d� are
force independent at f �3.1 pN �Fig. 5�a�� and f �9.5 pN
�Fig. 5�d�� �dashed lines�. The data shown in Figs. 5�b� and
5�c� were obtained at higher forces where a force-
independent behavior could not be definitely established. The
dashed lines in these cases indicate the expected force-
independent behavior and yield the following values for A2:
�a� 74±2 Pa−1 s−1/2, �b� 28±1 Pa−1 s−1/2, �c�
20.1±0.6 Pa−1 s−1/2, and �d� 13±1 Pa−1 s−1/2. The higher-
force dependence of A2 can be approximated with good ac-
curacy by the power law

A2 � f−�2. �5�

The exponents �2 corresponding to the data obtained
during the same day of preparation are summarized in Table
II. These exponents are averaged using the weighted average
method. The resulting value of the exponent is
�2�0.27±0.03.

2. Dependence of A2 on the actin concentration

Equation �2� predicts that within the intermediate regime,
the compliance J�t� depends on the concentration only
through the coefficient A2=A2�c�. To obtain the highest pos-
sible number of data points, one should use data taken simul-

FIG. 3. Crossover times plotted versus the force amplitude. �a�
The first crossover time 
1 is force independent at f �9.5 pN and
takes the value 
1�0.27 s �solid line�. At f �9.5 pN, its depen-
dence on force can be approximated by the power law 
1� f−1 �the
dashed line�. �b� The second crossover time exhibits 
2� f−2 de-
pendence on force �solid line� in the whole force interval with
1�2�0.5.

FIG. 4. �Color online� The ratio x�t� / f in the short-time regime
for the actin networks with the concentration of 11 �M �a� and
19 �M �b�. The marked by grey dots data were obtained by ana-
lyzing the responses of 22 �a� and 23 �b� beads. The straight solid
lines show the best fit to the power law x�t� / f � t�1 for �1= 3

4 .
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taneously at various values of the force amplitude f . For
these purposes, note that one can roughly describe the
A2=A2�f� dependence using the power law A2�f�� f−0.27

over the entire force interval 2 pN� f �120 pN. The product
A2�f�� f0.27 is, therefore, approximately force independent
and depends only on the actin concentration. This depen-
dence is shown in Fig. 6�a�, where each data point represents
an average over a series of measurements collected from
several tens of pulses and different beads at a given actin
concentration. By analyzing the data of Fig. 6�a� in terms of
a power law

A2 � c−�2, �6�

we find a value of �2�1.1±0.3 �the solid line fitting the data
in Fig. 6�a��.

F. Viscosity in the long-time regime

In the long-time regime �i=3�, the bead exhibited a steady
motion and, therefore, the network could be characterized by
the viscosity �3. Making use of �1� and �2�, one finds

A3 � �3
−1. �7�

In Fig. 6�b�, the viscosity �3 is plotted versus the actin con-
centration. As in the previous case, each data point represents
the average over a series of measurements performed with
several tens of pulses and different beads for a given network
concentration. By analyzing the data in terms of the power
law

�3 � c�3, �8�

we find a value �3�1.4±0.3.

G. Viscoelastic modulus of the actin network

Viscoelastic modulus in the time domain G�t� complimen-
tary to the compliance is defined according to the general
relation �43� �−�

t G�t− t��J�t��dt�= t. Taking into account the
definition �44� of the viscoelastic modulus in the frequency
domain G���, this relation yields

FIG. 5. The compliance coefficient A2 plotted versus force for
four concentrations �a� c=11 �M �circles�, �b� c=19 �M �squares�,
�c� c=27 �M �triangles�, and �d� c=10 �M �filled circles�. The first
three samples where prepared at the same time and the fourth on
another day. A2 is force independent at small forces �which can be
clearly seen in �a� and �d� �dashed lines��, while at higher forces it
decreases monotonically with increasing force which can be de-
scribed by the power law �5�. The solid lines show the fits of the
corresponding data by the power law �5� yielding the exponents
summarized in Table II.

TABLE II. Exponents �2

Concentration ��M� Exponent �2 Error �2

9.5 0.27 0.15

11 0.35 0.09

19 0.26 0.04

27 0.27 0.05

35 0.31 0.3

Weighted average 0.27 0.03

FIG. 6. Variation of the creep compliance of the actin network
with the concentration of actin. �a� The force-independent combi-
nation A2f0.27 plotted versus concentration in the intermediate re-
gime. Solid line represents the weighted best fit of the data with the
power law �6� yielding �2�1.1. �b� Dependence of the viscosity in
the long-time regime �3 on the actin concentration. Solid line
shows the best fit with the power law �8� yielding �3�1.4.
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G��� =
1

i�J̃�i��
, �9�

where J̃�s�=�0
�J�t�exp�−ts�dt is the Laplace transform of the

compliance, s is a complex number, J̃�i��� J̃�s�s=i� and � is
the frequency. Relation �9� enables one to determine G���, if
the Laplace transform of the compliance is calculated. In

order to obtain J̃�s�, it is convenient to use a continuous
expression approximating the measured compliance instead
of the piecewise-continuous function �2�. This expression
takes the form

J�t� = 	
i=1

3

Ji�t� �10�

with

J1�t� = A1t3/4 exp�− t/
1�, J2�t� = A2t1/2 exp�− t/
2�

��1 − exp�− t/
1�� ,

J3�t� = �b3 + A3t��1 − exp�− t/
2�� . �11�

The three terms �11� of the compliance �10� correspond to
the short-time, intermediate-time, and long-time regimes.
The exponential factors provide smooth cutoffs of each of
these terms outside of the corresponding time interval.

Figure 7�a� shows the compliance data �circles� which

were obtained from the network with the actin concentration
c=10 �M, f =17 pN. Fitting of the data by the expressions
�10� and �11� yields the solid line. The values of parameters
A1,2,3 ,b3, and 
1,2 found by this fitting are close to those
obtained by using of the piecewise-continuous function �2�.
One can see that �10� and �11� fit the experimental curve with
a good accuracy.

Representation of the compliance in the time domain in
the form �10� and �11� is favorable, since it enables us to
evaluate the Laplace transform of the compliance analyti-
cally and, therefore, to calculate the frequency-dependent
shear modulus explicitly. The Laplace transform of the sum

�10� takes the form J̃�s�= J̃1�s�+ J̃2�s�+ J̃3�s�, where J̃i�s� are
the Laplace transforms of the compliance components �11�.
One finds

J̃1�s� =
A1��7/4�

�s + 
1
−1�7/4 , �12�

J̃2�s� =
A2�1/2

2

 1

�s + 
2
−1�3/2 −

1

�s + 
3
−1�3/2� , �13�

J̃3�s� =

2

−1

s2�s + 
2
−1�2 �b3s�s + 
2

−1� + A3�2s + 
2
−1�� , �14�

where 
3=
1
2 / �
1+
2� and the value of the gamma function
is ��7/4��0.92.

Setting s= i� in �12�–�14� one can calculate the viscoelas-
tic modulus, G*���=G����+ iG����. Using �12�–�14�, one
can express the storage and loss moduli, G���� and G����, in
terms of auxiliary functions R��� and I��� as

G���� =
R���

R2��� + I2���
, G���� = −

I���
R2��� + I2���

,

�15�

where R���=R1���+R2���+R3���, I���= I1���+ I2���
+ I3���, and

R1 =
A1��7/4��

��2 + 
1
−2�7/8sin�7�1/4�, I1 =

A1��7/4��
��2 + 
1

−2�7/8cos�7�1/4� ,

�16�

R2 =
A2�1/2�

2

 sin�3�2/2�

��2 + 
2
−2�3/4 −

sin�3�3/2�
��2 + 
3

−2�3/4� , �17�

I2 =
A2�1/2�

2

 cos�3�2/2�

��2 + 
2
−2�3/4 −

cos�3�3/2�
��2 + 
3

−2�3/4� , �18�

R3 =
b3
2

−2��2 + 
2
−2� − 2A3
2

−1�2

��2 + 
2
−2�2 , �19�

I3 = −
b3�


2��2 + 
2
−2�

−
A3�3�2 + 
2

−2�
�
2

2��2 + 
2
−2�2 . �20�

Here, �i=arctan��
i�, i=1, 2, 3. Though these are rather
complex, equations �15�–�20� yield the storage and loss

FIG. 7. �Color online� �a� Creep compliance of the network with
the concentration c=10 �M obtained with the force amplitude
f =17 pN. The open circles show the experimental data. The solid
line shows its fitting by equations �10� and �11�. �b� The viscoelastic
modulus calculated from the data shown in �a� using representation
�15�–�20� and the values of the parameters obtained from the fit.
The straight dashed line approximates the behavior of the storage
modulus in the plateau regime by the power law G������k2 with
k2�0.1.

UHDE et al. PHYSICAL REVIEW E 72, 061916 �2005�

061916-6



moduli in an explicit form. Since the parameters
A1 ,A2 ,A3 ,b3 ,
1, and 
2 are obtained by fitting the compli-
ance curve defined by Eqs. �10� and �11�, the expressions
�15�–�20� contain no undefined parameters. Using a double
logarithmic scale, Fig. 7�b� shows the storage and loss
moduli, G���� and G����, obtained using �15�–�20�.

It is clearly seen that the three regimes of J�t� in the time
domain �presented in Fig. 2� map onto three frequency re-
gimes of G���� �Fig. 7�b��: the high-frequency, the low-
frequency and the intermediate-frequency �usually referred
to as the plateau� regimes. On the double-logarithmic plot
�Fig. 7�b��, the dependence of the storage modulus on fre-
quency in the plateau regime is close to a straight line and
can be approximately characterized by its slope k2. By fit-
ting, we find k2�0.1±0.15.

IV. DISCUSSION

A. Compliance of actin networks in the time domain

We studied the viscoelastic properties of entangled actin
networks of various concentrations by magnetic bead mi-
crorheometry. Using rectangular force pulses of up to 60-s
duration enabled us to observe three distinct types of the
bead motion, referred to as the short-time, the intermediate-
time, and the long-time regimes separated by crossover times

1 and 
2. Each regime can be described by the expression
�2�.

During the short-time regime �t�
1�0.1 s�, we observed
the bead motion described by the well-known exponent
�1=0.75 �14,28,36,37,45–47�. The bead displacement during
the short-time regime is smaller than the mesh size �cf. Fig.
1�b� and Table I� and, from this, we deduce that the bead
encounters only few actin filaments. Due to the structural
inhomogeneity of the network, the number of filaments en-
countered varies from bead to bead. This explains the ob-
served variations in the compliance coefficient A1. The
model proposed in the paper �28� accounting for the dynamic
bending of filaments by the bead, describes the bead motion
in this regime. Estimates made in Ref. �48� show that this
model exhibits a good agreement with our measurements.

The short-time regime is followed by the intermediate-
time regime at 
1� t�
2 which covers two decades. This
regime is characterized by the power law J�t�� t�2 with
�2�0.5 for all actin concentrations and all force amplitudes.
This is the first observation of the regime characterized by
the square-root time dependence �2�0.5 during forced bead
motion, and therefore, this regime is in the main focus of our
interest in this paper. For f � f0�9.5 pN, where we found
that the compliance does not depend on the force, we deter-
mined a power law J�t�� t�2c−�2 with �2�1.1. Thus at
f � f0, the bead displacement depends linearly on the force
amplitude x�t�� t�2c−�2f . In contrast, at higher forces
�f � f0�, the compliance decreases with increasing force,
such as J�t�� t�2c−�2f−�2, and the displacement exhibits a
sublinear force dependence x�t�� t�2c−�2f1−�2 with �2

�0.27. The origin of such a nonlinearity may be related to
an orientational ordering of filaments in the vicinity of the
moving bead as well as to a weak cross-linking of the fila-

ments �for example, by divalent ions always present in the
solution�. Identifying its origin is, however, outside the scope
of this work.

The intermediate regime can only be observed provided

max/
1�1. In previous works �7,8,13,26,29,32,38,49,50�,
pulses with shorter duration �typically 
max�1 s� were used.
In that case, 
max/
1�3–10, a ratio insufficiently large to
clearly detect the intermediate regime. In the present work,
we used pulses with much longer duration �
max up to 60 s
which yields 
max/
1�102–103�. This enabled us to reliably
observe the intermediate regime.

At t�
2, we observed a crossover to the behavior
J�t��c−�3t�3 with �3�0.9 indicating a viscouslike motion
and �3�1.4. A simple calculation ln�
max/
2��0.78 shows
that we observed the long-time behavior over less than a
decade. In principle, this is not long enough to reliably es-
tablish the value of the exponent �3, if it were unknown. It is
generally expected that on a long-time scale, entangled actin
networks must exhibit viscouslike behavior described by
J�t�� t yielding �3=1. We believe, however, that at t�
2,
we are observing the transition to a viscouslike behavior of
the network. Two considerations support the conclusion that
there are no other regimes between the intermediate-time and
the viscouslike long-time one. First, the overall bead dis-
placement �i.e., xmax=x�
max�� is much larger than the mesh
size, and the network properties are effectively averaged
over such a distance. Thus, a further increase of 
max �accom-
panied by the increase of the xmax� cannot yield new infor-
mation about the network. Second, macrorheometric and mi-
crorheometric measurements in the frequency domain at
small frequency values did not indicate any other regimes or
peculiarities of the viscoelastic moduli at ��
2

−1 �see, for
example, �11,51��. For these reasons, the fact that the expo-
nent �3 extracted from the compliance curve is close to the
expected value �3=1 as well as the correspondence of the
time interval t�
2 to those observed elsewhere �11,51� en-
ables us to state that at t�
2, we have observed the transition
to the long-time regime in which the compliance is linear in
time.

Fluid behavior exhibiting a linear dependence of compli-
ance on time J�t�� t is usually referred to as viscous. The
term “viscous” assumes, however, a shear-friction mecha-
nism of dissipation �52� and the corresponding shear-induced
mechanism of the resistance of the fluid to the bead motion.
The network resistance to the bead motion is, however, de-
termined by the piling up actin filaments in front of the bead
�35,48� �see Sec. IV B�, rather than by a shear friction. For
this reason, we refer to the long-time regime as being
quasiviscous.

B. Comparison with previous results

A behavior related to the intermediate regime has been
recently observed by the two-bead microrheology �45�. To
discuss this relation, first note that the Laplace transform
of the binary correlation function of a freely fluctuating
bead �as well as that of its mean square displacement� has
the form �21� �x�x−����G����−1. Comparing this with
�9� and making the inverse Laplace transform, one finds
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�x2�t��J�t�. Our data lead to the conclusion that in the
intermediate-time regime, the mean square displacement
of the freely fluctuating bead depended on time as
�x2�t�� t1/2 in agreement with the observation by means of
two-bead microrheometry �45�.

At 
1 /
2�0.1, the second term in �23� is much smaller
than the first one, and thus, the slope of the plateau will be
close to the value k2=0.5. For this reason, the impedance
spectra with G������1/2 may be an indication of the inter-
mediate regime. Such a dependence has been predicted in the
paper �53� for flexible polymers �i.e., with L /Lp�1, where L
and Lp are the contour and persistent lengths of the fila-
ments�. The actin filaments used in our work possess contour
length L�20 �m and persistent length Lp�17 �m �54�.
They are thus, semiflexible with L /Lp�1.2. For this reason,
the mechanism discussed in Ref. �53� is not responsible for
the intermediate-time behavior of the network reported in the
present work.

Simulation of the forced motion of a bead through a net-
work of semiflexible filaments was reported recently �55�.
These simulations exhibited the short-time and intermediate-
time regimes characterized by the exponents �1�0.75 and
�2�0.5. They predicted that in the intermediate regime, the
bead displacement obeys the power law x�t�� t0.5c−1.4f . The
simulation revealed also the following mechanism respon-
sible for the resistance of the network to the bead motion
during the intermediate regime. The filaments are piled up in
front of the moving bead, and steric repulsion between the
bead and the filaments makes the main contribution to the
resisting force. Because of limitations of the simulation time,
the long-time regime was not observed in Ref. �55�.

The intermediate-time and long-time regimes with �2= 1
2

and �3=1 have been predicted by an analytical theory
�35,48�. This approach �35,48� yields estimates for the com-
pliance coefficients A2 and A3

A2 � 6��2
Lp

1/3�8/3D1/2

RkBT
, A3 � 6��3

4Lp
1/3�8/3D

R2kBT
, �21�

where D is the longitudinal diffusion coefficient of the fila-
ments, T is the temperature, and �2,3 are dimensionless
geometrical factors taking on the values �2�0.055 �55� and
�3�0.04 �48�. In Refs. �35,48�, both A2 and A3 are indepen-
dent of the force amplitude �i.e., �2=�3=0�, which
agrees with the behavior of A2 at f � f0 as well as of A3
observed in the present work. Since ��c−1/2, Eq. �21� pre-
dicts �2=�3= 4

3 close to the values �2�1.1 and �3�1.4 re-
ported here. Taking the parameters ��0.5 �m �correspond-
ing to the actin concentration c=11 �M�, R=2.25 �m of our
system, the diffusion coefficient �56� D�10−13 m2/s and
Lp�17 �m �54�, one finds A2�10 Pa−1 s−1/2. This estimate
agrees well with one of the values of A2�13±1 Pa−1 s−1/2

reported here �Fig. 5�d��. It is, however, smaller by an order
of magnitude than the other values of A2 reported in this
work �Figs. 5�a�–5�c��. These three values, however, derive
from measurements carried out on preparations made on a
day different from that on which the fourth measurement was
made. Finally, one finds the estimate for the coefficient of the
long-time regime A3�1 Pa−1 s−1, which is smaller than the

coefficient A3=�3
−1�10 Pa−1 s−1 reported in this work �cf.

Fig. 6�b� at c=11 �M�.
The discrepancy between the observations corresponding

to different days of preparation of the network �and the cor-
responding discrepancy between the experimental results and
the theoretical predictions� are related to the highly inhomo-
geneous structure of the actin gel, which cannot be con-
trolled simultaneously with the micromechanical measure-
ments. During the network preparation, the probe beads are
more easily embedded into less dense regions of the network
and, therefore, exhibit higher displacement �yielding higher
A2 values� than would be obtained for a homogeneous gel.

C. Viscoelasticity of actin networks in the � domain

The frequency-dependent viscoelastic modulus obtained
from our compliance data also exhibited three regimes which
could be related to the three types of behavior observed in
the time domain.

To approximate the cumbersome formulas �15�–�20� by a
simple analytical expression for the plateau modulus, we in-
troduced a frequency �0= �
1
2�1/2 lying in the middle of the
logarithmic frequency interval �ln�
2

−1� , ln�
1
−1��. Since in our

measurements, the inequality 
2
−1��0�
1

−1 holds in the vi-
cinity of �0, one can neglect R1��� ,R3��� , I1���, and I3���
with respect to R2��� and I2��� in �15�. Neglecting, in addi-
tion, small terms ��0
1 and ��0
2�−1, one finds the approxi-
mate values of the moduli in the middle of the plateau

G���0� � G���0� �
1

A2�
1
2�1/4� 2

�
�1/2

. �22�

From �6� and �22�, it follows that the plateau modulus
depends on the actin concentration as G���0��G���0�
�c�2. Our results yield �2�1.1, while the theoretical ap-
proach �35,55� predicts �2� 4

3 .
The exponent k2 describing the plateau slope can

also be calculated within the approximation R����R2���,
I���� I2���. However, in this case, as we will see, the ex-
ponent k2 is small and the terms ��0
1 and ��0
2�−1 appear
to be comparable with its magnitude so that the previous
approximation cannot be applied. Accordingly, we calculated
k2 numerically as k2= �d ln G���� /dln �, where the deriva-
tive is averaged over the interval of the monotonicity of
G����. The exponent k2 can be approximated by the expres-
sion

k2 � 0.5 − 0.8�
1/
2�1/4. �23�

The high-frequency end of the plateau �h is determined
by the condition �11�

G���h� = G���h� . �24�

Evidently, the value �h is of the order of 
1
−1. In this case,

one can neglect R3��� and I3��� with respect to
R1��� ,R2��� , I1���, and I2��� in �15�. In this approximation,
Eq. �24� takes the form
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1

���h
1�2 + 1�1/8

sin�7�h/4 + �/4�
sin�3�h/2 + �/4�

�
�1/2

2��7/4�
A2

A1
1
1/4 ,

�25�

where �h=arctan��h
1�. In Ref. �48�, the first crossover time

1 has been defined from the condition that the compliance
curve �2� of the short-time regime �i=1� intersects with that
corresponding to the intermediate regime �i=2� yielding
A1
1

3/4=A2
1
1/2. This condition reduces the right-hand side of

Eq. �25� to �1/2 /2��7/4��0.964. Equation �25� can be then
solved numerically yielding the high-frequency end of the
plateau �h�0.549
1

−1.
Substituting A2�10 Pa−1 s−1/2, 
1�0.1 s, and 
2�10 s

from our measurements in �22� and �23�, one finds
�0�1 Hz, k2�0.25, G���0��G���0��0.1 Pa, and
�h�5 Hz.

Viscoelastic impedance spectra of actin networks obtained
by oscillating magnetic bead microrheometry was reported in
Ref. �11�. In this paper, networks with actin concentrations
c=12, 24, and 48 �M, which cover the same range as the
concentrations used in our work, were studied. The values of
the moduli G���0� and G���0� in the middle of the plateau
interval reported in Ref. �11� are close to our estimates. In
Ref. �11�, viscoelastic moduli are plotted as a function of
frequency �=� /2�. Our calculation yields the high-
frequency end of the plateau �h�0.087
1

−1�1 Hz in excel-

lent agreement with the results reported in the paper �11�.
Note that in order to characterize the plateau regime, we

calculated G���0��G���0� and k2 within the approximation
in which we neglected R1��� ,R3��� , I1���, and I3��� with
respect to R2��� and I2���. In other words, we accounted
only for the contribution of the intermediate regime. The
good agreement of our calculations with the data shown in
Fig. 6�b� ensures that in forced bead microrheology, the
intermediate-time regime in the t domain is directly related
to the plateau regime of G���� in the � domain.

Comparison with the mechanism responsible for the
intermediate-time regime �35,55,48� leads to the conclusion
that formation of the plateau in microrheological measure-
ments is determined by piling up the filaments by the moving
bead and their redistribution by diffusion.
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